Skip Navigation Links
Numerical Libraries
Linear Algebra
Differential Equations
Optimization
Samples
Skip Navigation Links
Linear Algebra
CSLapack
CSBlas
   1:  #region Translated by Jose Antonio De Santiago-Castillo.
   2:   
   3:  //Translated by Jose Antonio De Santiago-Castillo. 
   4:  //E-mail:JAntonioDeSantiago@gmail.com
   5:  //Web: www.DotNumerics.com
   6:  //
   7:  //Fortran to C# Translation.
   8:  //Translated by:
   9:  //F2CSharp Version 0.71 (November 10, 2009)
  10:  //Code Optimizations: None
  11:  //
  12:  #endregion
  13:   
  14:  using System;
  15:  using DotNumerics.FortranLibrary;
  16:   
  17:  namespace DotNumerics.CSLapack
  18:  {
  19:      /// <summary>
  20:      /// -- LAPACK auxiliary routine (version 3.1) --
  21:      /// Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  22:      /// November 2006
  23:      /// Purpose
  24:      /// =======
  25:      /// 
  26:      /// DLARFG generates a real elementary reflector H of order n, such
  27:      /// that
  28:      /// 
  29:      /// H * ( alpha ) = ( beta ),   H' * H = I.
  30:      /// (   x   )   (   0  )
  31:      /// 
  32:      /// where alpha and beta are scalars, and x is an (n-1)-element real
  33:      /// vector. H is represented in the form
  34:      /// 
  35:      /// H = I - tau * ( 1 ) * ( 1 v' ) ,
  36:      /// ( v )
  37:      /// 
  38:      /// where tau is a real scalar and v is a real (n-1)-element
  39:      /// vector.
  40:      /// 
  41:      /// If the elements of x are all zero, then tau = 0 and H is taken to be
  42:      /// the unit matrix.
  43:      /// 
  44:      /// Otherwise  1 .LE. tau .LE. 2.
  45:      /// 
  46:      ///</summary>
  47:      public class DLARFG
  48:      {
  49:      
  50:   
  51:          #region Dependencies
  52:          
  53:          DLAMCH _dlamch; DLAPY2 _dlapy2; DNRM2 _dnrm2; DSCAL _dscal; 
  54:   
  55:          #endregion
  56:   
  57:   
  58:          #region Fields
  59:          
  60:          const double ONE = 1.0E+0; const double ZERO = 0.0E+0; int J = 0; int KNT = 0; double BETA = 0; double RSAFMN = 0; 
  61:          double SAFMIN = 0;double XNORM = 0; 
  62:   
  63:          #endregion
  64:   
  65:          public DLARFG(DLAMCH dlamch, DLAPY2 dlapy2, DNRM2 dnrm2, DSCAL dscal)
  66:          {
  67:      
  68:   
  69:              #region Set Dependencies
  70:              
  71:              this._dlamch = dlamch; this._dlapy2 = dlapy2; this._dnrm2 = dnrm2; this._dscal = dscal; 
  72:   
  73:              #endregion
  74:   
  75:          }
  76:      
  77:          public DLARFG()
  78:          {
  79:      
  80:   
  81:              #region Dependencies (Initialization)
  82:              
  83:              LSAME lsame = new LSAME();
  84:              DLAMC3 dlamc3 = new DLAMC3();
  85:              DLAPY2 dlapy2 = new DLAPY2();
  86:              DNRM2 dnrm2 = new DNRM2();
  87:              DSCAL dscal = new DSCAL();
  88:              DLAMC1 dlamc1 = new DLAMC1(dlamc3);
  89:              DLAMC4 dlamc4 = new DLAMC4(dlamc3);
  90:              DLAMC5 dlamc5 = new DLAMC5(dlamc3);
  91:              DLAMC2 dlamc2 = new DLAMC2(dlamc3, dlamc1, dlamc4, dlamc5);
  92:              DLAMCH dlamch = new DLAMCH(lsame, dlamc2);
  93:   
  94:              #endregion
  95:   
  96:   
  97:              #region Set Dependencies
  98:              
  99:              this._dlamch = dlamch; this._dlapy2 = dlapy2; this._dnrm2 = dnrm2; this._dscal = dscal; 
 100:   
 101:              #endregion
 102:   
 103:          }
 104:          /// <summary>
 105:          /// Purpose
 106:          /// =======
 107:          /// 
 108:          /// DLARFG generates a real elementary reflector H of order n, such
 109:          /// that
 110:          /// 
 111:          /// H * ( alpha ) = ( beta ),   H' * H = I.
 112:          /// (   x   )   (   0  )
 113:          /// 
 114:          /// where alpha and beta are scalars, and x is an (n-1)-element real
 115:          /// vector. H is represented in the form
 116:          /// 
 117:          /// H = I - tau * ( 1 ) * ( 1 v' ) ,
 118:          /// ( v )
 119:          /// 
 120:          /// where tau is a real scalar and v is a real (n-1)-element
 121:          /// vector.
 122:          /// 
 123:          /// If the elements of x are all zero, then tau = 0 and H is taken to be
 124:          /// the unit matrix.
 125:          /// 
 126:          /// Otherwise  1 .LE. tau .LE. 2.
 127:          /// 
 128:          ///</summary>
 129:          /// <param name="N">
 130:          /// (input) INTEGER
 131:          /// The order of the elementary reflector.
 132:          ///</param>
 133:          /// <param name="ALPHA">
 134:          /// (input/output) DOUBLE PRECISION
 135:          /// On entry, the value alpha.
 136:          /// On exit, it is overwritten with the value beta.
 137:          ///</param>
 138:          /// <param name="X">
 139:          /// (input/output) DOUBLE PRECISION array, dimension
 140:          /// (1+(N-2)*abs(INCX))
 141:          /// On entry, the vector x.
 142:          /// On exit, it is overwritten with the vector v.
 143:          ///</param>
 144:          /// <param name="INCX">
 145:          /// (input) INTEGER
 146:          /// The increment between elements of X. INCX .GT. 0.
 147:          ///</param>
 148:          /// <param name="TAU">
 149:          /// (output) DOUBLE PRECISION
 150:          /// The value tau.
 151:          ///</param>
 152:          public void Run(int N, ref double ALPHA, ref double[] X, int offset_x, int INCX, ref double TAU)
 153:          {
 154:   
 155:              #region Array Index Correction
 156:              
 157:               int o_x = -1 + offset_x; 
 158:   
 159:              #endregion
 160:   
 161:   
 162:              #region Prolog
 163:              
 164:              // *
 165:              // *  -- LAPACK auxiliary routine (version 3.1) --
 166:              // *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
 167:              // *     November 2006
 168:              // *
 169:              // *     .. Scalar Arguments ..
 170:              // *     ..
 171:              // *     .. Array Arguments ..
 172:              // *     ..
 173:              // *
 174:              // *  Purpose
 175:              // *  =======
 176:              // *
 177:              // *  DLARFG generates a real elementary reflector H of order n, such
 178:              // *  that
 179:              // *
 180:              // *        H * ( alpha ) = ( beta ),   H' * H = I.
 181:              // *            (   x   )   (   0  )
 182:              // *
 183:              // *  where alpha and beta are scalars, and x is an (n-1)-element real
 184:              // *  vector. H is represented in the form
 185:              // *
 186:              // *        H = I - tau * ( 1 ) * ( 1 v' ) ,
 187:              // *                      ( v )
 188:              // *
 189:              // *  where tau is a real scalar and v is a real (n-1)-element
 190:              // *  vector.
 191:              // *
 192:              // *  If the elements of x are all zero, then tau = 0 and H is taken to be
 193:              // *  the unit matrix.
 194:              // *
 195:              // *  Otherwise  1 <= tau <= 2.
 196:              // *
 197:              // *  Arguments
 198:              // *  =========
 199:              // *
 200:              // *  N       (input) INTEGER
 201:              // *          The order of the elementary reflector.
 202:              // *
 203:              // *  ALPHA   (input/output) DOUBLE PRECISION
 204:              // *          On entry, the value alpha.
 205:              // *          On exit, it is overwritten with the value beta.
 206:              // *
 207:              // *  X       (input/output) DOUBLE PRECISION array, dimension
 208:              // *                         (1+(N-2)*abs(INCX))
 209:              // *          On entry, the vector x.
 210:              // *          On exit, it is overwritten with the vector v.
 211:              // *
 212:              // *  INCX    (input) INTEGER
 213:              // *          The increment between elements of X. INCX > 0.
 214:              // *
 215:              // *  TAU     (output) DOUBLE PRECISION
 216:              // *          The value tau.
 217:              // *
 218:              // *  =====================================================================
 219:              // *
 220:              // *     .. Parameters ..
 221:              // *     ..
 222:              // *     .. Local Scalars ..
 223:              // *     ..
 224:              // *     .. External Functions ..
 225:              // *     ..
 226:              // *     .. Intrinsic Functions ..
 227:              //      INTRINSIC          ABS, SIGN;
 228:              // *     ..
 229:              // *     .. External Subroutines ..
 230:              // *     ..
 231:              // *     .. Executable Statements ..
 232:              // *
 233:   
 234:              #endregion
 235:   
 236:   
 237:              #region Body
 238:              
 239:              if (N <= 1)
 240:              {
 241:                  TAU = ZERO;
 242:                  return;
 243:              }
 244:              // *
 245:              XNORM = this._dnrm2.Run(N - 1, X, offset_x, INCX);
 246:              // *
 247:              if (XNORM == ZERO)
 248:              {
 249:                  // *
 250:                  // *        H  =  I
 251:                  // *
 252:                  TAU = ZERO;
 253:              }
 254:              else
 255:              {
 256:                  // *
 257:                  // *        general case
 258:                  // *
 259:                  BETA =  - FortranLib.Sign(this._dlapy2.Run(ALPHA, XNORM),ALPHA);
 260:                  SAFMIN = this._dlamch.Run("S") / this._dlamch.Run("E");
 261:                  if (Math.Abs(BETA) < SAFMIN)
 262:                  {
 263:                      // *
 264:                      // *           XNORM, BETA may be inaccurate; scale X and recompute them
 265:                      // *
 266:                      RSAFMN = ONE / SAFMIN;
 267:                      KNT = 0;
 268:                  LABEL10:;
 269:                      KNT = KNT + 1;
 270:                      this._dscal.Run(N - 1, RSAFMN, ref X, offset_x, INCX);
 271:                      BETA = BETA * RSAFMN;
 272:                      ALPHA = ALPHA * RSAFMN;
 273:                      if (Math.Abs(BETA) < SAFMIN) goto LABEL10;
 274:                      // *
 275:                      // *           New BETA is at most 1, at least SAFMIN
 276:                      // *
 277:                      XNORM = this._dnrm2.Run(N - 1, X, offset_x, INCX);
 278:                      BETA =  - FortranLib.Sign(this._dlapy2.Run(ALPHA, XNORM),ALPHA);
 279:                      TAU = (BETA - ALPHA) / BETA;
 280:                      this._dscal.Run(N - 1, ONE / (ALPHA - BETA), ref X, offset_x, INCX);
 281:                      // *
 282:                      // *           If ALPHA is subnormal, it may lose relative accuracy
 283:                      // *
 284:                      ALPHA = BETA;
 285:                      for (J = 1; J <= KNT; J++)
 286:                      {
 287:                          ALPHA = ALPHA * SAFMIN;
 288:                      }
 289:                  }
 290:                  else
 291:                  {
 292:                      TAU = (BETA - ALPHA) / BETA;
 293:                      this._dscal.Run(N - 1, ONE / (ALPHA - BETA), ref X, offset_x, INCX);
 294:                      ALPHA = BETA;
 295:                  }
 296:              }
 297:              // *
 298:              return;
 299:              // *
 300:              // *     End of DLARFG
 301:              // *
 302:   
 303:              #endregion
 304:   
 305:          }
 306:      }
 307:  }