Skip Navigation Links
Numerical Libraries
Linear Algebra
Differential Equations
Optimization
Samples
Skip Navigation Links
Linear Algebra
CSLapack
CSBlas
   1:  #region Translated by Jose Antonio De Santiago-Castillo.
   2:   
   3:  //Translated by Jose Antonio De Santiago-Castillo. 
   4:  //E-mail:JAntonioDeSantiago@gmail.com
   5:  //Web: www.DotNumerics.com
   6:  //
   7:  //Fortran to C# Translation.
   8:  //Translated by:
   9:  //F2CSharp Version 0.71 (November 10, 2009)
  10:  //Code Optimizations: None
  11:  //
  12:  #endregion
  13:   
  14:  using System;
  15:  using DotNumerics.FortranLibrary;
  16:   
  17:  namespace DotNumerics.CSLapack
  18:  {
  19:      /// <summary>
  20:      /// -- LAPACK driver routine (version 3.1) --
  21:      /// Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  22:      /// November 2006
  23:      /// Purpose
  24:      /// =======
  25:      /// 
  26:      /// DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric
  27:      /// matrix in standard form:
  28:      /// 
  29:      /// [ A  B ] = [ CS -SN ] [ AA  BB ] [ CS  SN ]
  30:      /// [ C  D ]   [ SN  CS ] [ CC  DD ] [-SN  CS ]
  31:      /// 
  32:      /// where either
  33:      /// 1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or
  34:      /// 2) AA = DD and BB*CC .LT. 0, so that AA + or - sqrt(BB*CC) are complex
  35:      /// conjugate eigenvalues.
  36:      /// 
  37:      ///</summary>
  38:      public class DLANV2
  39:      {
  40:      
  41:   
  42:          #region Dependencies
  43:          
  44:          DLAMCH _dlamch; DLAPY2 _dlapy2; 
  45:   
  46:          #endregion
  47:   
  48:   
  49:          #region Fields
  50:          
  51:          const double ZERO = 0.0E+0; const double HALF = 0.5E+0; const double ONE = 1.0E+0; const double MULTPL = 4.0E+0; 
  52:          double AA = 0;double BB = 0; double BCMAX = 0; double BCMIS = 0; double CC = 0; double CS1 = 0; double DD = 0; 
  53:          double EPS = 0;double P = 0; double SAB = 0; double SAC = 0; double SCALE = 0; double SIGMA = 0; double SN1 = 0; 
  54:          double TAU = 0;double TEMP = 0; double Z = 0; 
  55:   
  56:          #endregion
  57:   
  58:          public DLANV2(DLAMCH dlamch, DLAPY2 dlapy2)
  59:          {
  60:      
  61:   
  62:              #region Set Dependencies
  63:              
  64:              this._dlamch = dlamch; this._dlapy2 = dlapy2; 
  65:   
  66:              #endregion
  67:   
  68:          }
  69:      
  70:          public DLANV2()
  71:          {
  72:      
  73:   
  74:              #region Dependencies (Initialization)
  75:              
  76:              LSAME lsame = new LSAME();
  77:              DLAMC3 dlamc3 = new DLAMC3();
  78:              DLAPY2 dlapy2 = new DLAPY2();
  79:              DLAMC1 dlamc1 = new DLAMC1(dlamc3);
  80:              DLAMC4 dlamc4 = new DLAMC4(dlamc3);
  81:              DLAMC5 dlamc5 = new DLAMC5(dlamc3);
  82:              DLAMC2 dlamc2 = new DLAMC2(dlamc3, dlamc1, dlamc4, dlamc5);
  83:              DLAMCH dlamch = new DLAMCH(lsame, dlamc2);
  84:   
  85:              #endregion
  86:   
  87:   
  88:              #region Set Dependencies
  89:              
  90:              this._dlamch = dlamch; this._dlapy2 = dlapy2; 
  91:   
  92:              #endregion
  93:   
  94:          }
  95:          /// <summary>
  96:          /// Purpose
  97:          /// =======
  98:          /// 
  99:          /// DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric
 100:          /// matrix in standard form:
 101:          /// 
 102:          /// [ A  B ] = [ CS -SN ] [ AA  BB ] [ CS  SN ]
 103:          /// [ C  D ]   [ SN  CS ] [ CC  DD ] [-SN  CS ]
 104:          /// 
 105:          /// where either
 106:          /// 1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or
 107:          /// 2) AA = DD and BB*CC .LT. 0, so that AA + or - sqrt(BB*CC) are complex
 108:          /// conjugate eigenvalues.
 109:          /// 
 110:          ///</summary>
 111:          /// <param name="A">
 112:          /// (input/output) DOUBLE PRECISION
 113:          ///</param>
 114:          /// <param name="B">
 115:          /// (input/output) DOUBLE PRECISION
 116:          ///</param>
 117:          /// <param name="C">
 118:          /// (input/output) DOUBLE PRECISION
 119:          ///</param>
 120:          /// <param name="D">
 121:          /// (input/output) DOUBLE PRECISION
 122:          /// On entry, the elements of the input matrix.
 123:          /// On exit, they are overwritten by the elements of the
 124:          /// standardised Schur form.
 125:          ///</param>
 126:          /// <param name="RT1R">
 127:          /// (output) DOUBLE PRECISION
 128:          ///</param>
 129:          /// <param name="RT1I">
 130:          /// (output) DOUBLE PRECISION
 131:          ///</param>
 132:          /// <param name="RT2R">
 133:          /// (output) DOUBLE PRECISION
 134:          ///</param>
 135:          /// <param name="RT2I">
 136:          /// (output) DOUBLE PRECISION
 137:          /// The real and imaginary parts of the eigenvalues. If the
 138:          /// eigenvalues are a complex conjugate pair, RT1I .GT. 0.
 139:          ///</param>
 140:          /// <param name="CS">
 141:          /// (output) DOUBLE PRECISION
 142:          ///</param>
 143:          /// <param name="SN">
 144:          /// (output) DOUBLE PRECISION
 145:          /// Parameters of the rotation matrix.
 146:          ///</param>
 147:          public void Run(ref double A, ref double B, ref double C, ref double D, ref double RT1R, ref double RT1I
 148:                           , ref double RT2R, ref double RT2I, ref double CS, ref double SN)
 149:          {
 150:   
 151:              #region Prolog
 152:              
 153:              // *
 154:              // *  -- LAPACK driver routine (version 3.1) --
 155:              // *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
 156:              // *     November 2006
 157:              // *
 158:              // *     .. Scalar Arguments ..
 159:              // *     ..
 160:              // *
 161:              // *  Purpose
 162:              // *  =======
 163:              // *
 164:              // *  DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric
 165:              // *  matrix in standard form:
 166:              // *
 167:              // *       [ A  B ] = [ CS -SN ] [ AA  BB ] [ CS  SN ]
 168:              // *       [ C  D ]   [ SN  CS ] [ CC  DD ] [-SN  CS ]
 169:              // *
 170:              // *  where either
 171:              // *  1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or
 172:              // *  2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex
 173:              // *  conjugate eigenvalues.
 174:              // *
 175:              // *  Arguments
 176:              // *  =========
 177:              // *
 178:              // *  A       (input/output) DOUBLE PRECISION
 179:              // *  B       (input/output) DOUBLE PRECISION
 180:              // *  C       (input/output) DOUBLE PRECISION
 181:              // *  D       (input/output) DOUBLE PRECISION
 182:              // *          On entry, the elements of the input matrix.
 183:              // *          On exit, they are overwritten by the elements of the
 184:              // *          standardised Schur form.
 185:              // *
 186:              // *  RT1R    (output) DOUBLE PRECISION
 187:              // *  RT1I    (output) DOUBLE PRECISION
 188:              // *  RT2R    (output) DOUBLE PRECISION
 189:              // *  RT2I    (output) DOUBLE PRECISION
 190:              // *          The real and imaginary parts of the eigenvalues. If the
 191:              // *          eigenvalues are a complex conjugate pair, RT1I > 0.
 192:              // *
 193:              // *  CS      (output) DOUBLE PRECISION
 194:              // *  SN      (output) DOUBLE PRECISION
 195:              // *          Parameters of the rotation matrix.
 196:              // *
 197:              // *  Further Details
 198:              // *  ===============
 199:              // *
 200:              // *  Modified by V. Sima, Research Institute for Informatics, Bucharest,
 201:              // *  Romania, to reduce the risk of cancellation errors,
 202:              // *  when computing real eigenvalues, and to ensure, if possible, that
 203:              // *  abs(RT1R) >= abs(RT2R).
 204:              // *
 205:              // *  =====================================================================
 206:              // *
 207:              // *     .. Parameters ..
 208:              // *     ..
 209:              // *     .. Local Scalars ..
 210:              // *     ..
 211:              // *     .. External Functions ..
 212:              // *     ..
 213:              // *     .. Intrinsic Functions ..
 214:              //      INTRINSIC          ABS, MAX, MIN, SIGN, SQRT;
 215:              // *     ..
 216:              // *     .. Executable Statements ..
 217:              // *
 218:   
 219:              #endregion
 220:   
 221:   
 222:              #region Body
 223:              
 224:              EPS = this._dlamch.Run("P");
 225:              if (C == ZERO)
 226:              {
 227:                  CS = ONE;
 228:                  SN = ZERO;
 229:                  goto LABEL10;
 230:                  // *
 231:              }
 232:              else
 233:              {
 234:                  if (B == ZERO)
 235:                  {
 236:                      // *
 237:                      // *        Swap rows and columns
 238:                      // *
 239:                      CS = ZERO;
 240:                      SN = ONE;
 241:                      TEMP = D;
 242:                      D = A;
 243:                      A = TEMP;
 244:                      B =  - C;
 245:                      C = ZERO;
 246:                      goto LABEL10;
 247:                  }
 248:                  else
 249:                  {
 250:                      if ((A - D) == ZERO && FortranLib.Sign(ONE,B) != FortranLib.Sign(ONE,C))
 251:                      {
 252:                          CS = ONE;
 253:                          SN = ZERO;
 254:                          goto LABEL10;
 255:                      }
 256:                      else
 257:                      {
 258:                          // *
 259:                          TEMP = A - D;
 260:                          P = HALF * TEMP;
 261:                          BCMAX = Math.Max(Math.Abs(B), Math.Abs(C));
 262:                          BCMIS = Math.Min(Math.Abs(B), Math.Abs(C)) * FortranLib.Sign(ONE,B) * FortranLib.Sign(ONE,C);
 263:                          SCALE = Math.Max(Math.Abs(P), BCMAX);
 264:                          Z = (P / SCALE) * P + (BCMAX / SCALE) * BCMIS;
 265:                          // *
 266:                          // *        If Z is of the order of the machine accuracy, postpone the
 267:                          // *        decision on the nature of eigenvalues
 268:                          // *
 269:                          if (Z >= MULTPL * EPS)
 270:                          {
 271:                              // *
 272:                              // *           Real eigenvalues. Compute A and D.
 273:                              // *
 274:                              Z = P + FortranLib.Sign(Math.Sqrt(SCALE) * Math.Sqrt(Z),P);
 275:                              A = D + Z;
 276:                              D = D - (BCMAX / Z) * BCMIS;
 277:                              // *
 278:                              // *           Compute B and the rotation matrix
 279:                              // *
 280:                              TAU = this._dlapy2.Run(C, Z);
 281:                              CS = Z / TAU;
 282:                              SN = C / TAU;
 283:                              B = B - C;
 284:                              C = ZERO;
 285:                          }
 286:                          else
 287:                          {
 288:                              // *
 289:                              // *           Complex eigenvalues, or real (almost) equal eigenvalues.
 290:                              // *           Make diagonal elements equal.
 291:                              // *
 292:                              SIGMA = B + C;
 293:                              TAU = this._dlapy2.Run(SIGMA, TEMP);
 294:                              CS = Math.Sqrt(HALF * (ONE + Math.Abs(SIGMA) / TAU));
 295:                              SN =  - (P / (TAU * CS)) * FortranLib.Sign(ONE,SIGMA);
 296:                              // *
 297:                              // *           Compute [ AA  BB ] = [ A  B ] [ CS -SN ]
 298:                              // *                   [ CC  DD ]   [ C  D ] [ SN  CS ]
 299:                              // *
 300:                              AA = A * CS + B * SN;
 301:                              BB =  - A * SN + B * CS;
 302:                              CC = C * CS + D * SN;
 303:                              DD =  - C * SN + D * CS;
 304:                              // *
 305:                              // *           Compute [ A  B ] = [ CS  SN ] [ AA  BB ]
 306:                              // *                   [ C  D ]   [-SN  CS ] [ CC  DD ]
 307:                              // *
 308:                              A = AA * CS + CC * SN;
 309:                              B = BB * CS + DD * SN;
 310:                              C =  - AA * SN + CC * CS;
 311:                              D =  - BB * SN + DD * CS;
 312:                              // *
 313:                              TEMP = HALF * (A + D);
 314:                              A = TEMP;
 315:                              D = TEMP;
 316:                              // *
 317:                              if (C != ZERO)
 318:                              {
 319:                                  if (B != ZERO)
 320:                                  {
 321:                                      if (FortranLib.Sign(ONE,B) == FortranLib.Sign(ONE,C))
 322:                                      {
 323:                                          // *
 324:                                          // *                    Real eigenvalues: reduce to upper triangular form
 325:                                          // *
 326:                                          SAB = Math.Sqrt(Math.Abs(B));
 327:                                          SAC = Math.Sqrt(Math.Abs(C));
 328:                                          P = FortranLib.Sign(SAB * SAC,C);
 329:                                          TAU = ONE / Math.Sqrt(Math.Abs(B + C));
 330:                                          A = TEMP + P;
 331:                                          D = TEMP - P;
 332:                                          B = B - C;
 333:                                          C = ZERO;
 334:                                          CS1 = SAB * TAU;
 335:                                          SN1 = SAC * TAU;
 336:                                          TEMP = CS * CS1 - SN * SN1;
 337:                                          SN = CS * SN1 + SN * CS1;
 338:                                          CS = TEMP;
 339:                                      }
 340:                                  }
 341:                                  else
 342:                                  {
 343:                                      B =  - C;
 344:                                      C = ZERO;
 345:                                      TEMP = CS;
 346:                                      CS =  - SN;
 347:                                      SN = TEMP;
 348:                                  }
 349:                              }
 350:                          }
 351:                          // *
 352:                      }
 353:                  }
 354:              }
 355:              // *
 356:          LABEL10:;
 357:              // *
 358:              // *     Store eigenvalues in (RT1R,RT1I) and (RT2R,RT2I).
 359:              // *
 360:              RT1R = A;
 361:              RT2R = D;
 362:              if (C == ZERO)
 363:              {
 364:                  RT1I = ZERO;
 365:                  RT2I = ZERO;
 366:              }
 367:              else
 368:              {
 369:                  RT1I = Math.Sqrt(Math.Abs(B)) * Math.Sqrt(Math.Abs(C));
 370:                  RT2I =  - RT1I;
 371:              }
 372:              return;
 373:              // *
 374:              // *     End of DLANV2
 375:              // *
 376:   
 377:              #endregion
 378:   
 379:          }
 380:      }
 381:  }