Skip Navigation Links
Numerical Libraries
Linear Algebra
Differential Equations
Optimization
Samples
Skip Navigation Links
Linear Algebra
CSLapack
CSBlas
   1:  #region Translated by Jose Antonio De Santiago-Castillo.
   2:   
   3:  //Translated by Jose Antonio De Santiago-Castillo. 
   4:  //E-mail:JAntonioDeSantiago@gmail.com
   5:  //Web: www.DotNumerics.com
   6:  //
   7:  //Fortran to C# Translation.
   8:  //Translated by:
   9:  //F2CSharp Version 0.71 (November 10, 2009)
  10:  //Code Optimizations: None
  11:  //
  12:  #endregion
  13:   
  14:  using System;
  15:  using DotNumerics.FortranLibrary;
  16:   
  17:  namespace DotNumerics.CSLapack
  18:  {
  19:      /// <summary>
  20:      /// -- LAPACK auxiliary routine (version 3.1) --
  21:      /// Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  22:      /// November 2006
  23:      /// Purpose
  24:      /// =======
  25:      /// 
  26:      /// DLANSY  returns the value of the one norm,  or the Frobenius norm, or
  27:      /// the  infinity norm,  or the  element of  largest absolute value  of a
  28:      /// real symmetric matrix A.
  29:      /// 
  30:      /// Description
  31:      /// ===========
  32:      /// 
  33:      /// DLANSY returns the value
  34:      /// 
  35:      /// DLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  36:      /// (
  37:      /// ( norm1(A),         NORM = '1', 'O' or 'o'
  38:      /// (
  39:      /// ( normI(A),         NORM = 'I' or 'i'
  40:      /// (
  41:      /// ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
  42:      /// 
  43:      /// where  norm1  denotes the  one norm of a matrix (maximum column sum),
  44:      /// normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
  45:      /// normF  denotes the  Frobenius norm of a matrix (square root of sum of
  46:      /// squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
  47:      /// 
  48:      ///</summary>
  49:      public class DLANSY
  50:      {
  51:      
  52:   
  53:          #region Dependencies
  54:          
  55:          DLASSQ _dlassq; LSAME _lsame; 
  56:   
  57:          #endregion
  58:   
  59:   
  60:          #region Fields
  61:          
  62:          const double ONE = 1.0E+0; const double ZERO = 0.0E+0; int I = 0; int J = 0; double ABSA = 0; double SCALE = 0; 
  63:          double SUM = 0;double VALUE = 0; 
  64:   
  65:          #endregion
  66:   
  67:          public DLANSY(DLASSQ dlassq, LSAME lsame)
  68:          {
  69:      
  70:   
  71:              #region Set Dependencies
  72:              
  73:              this._dlassq = dlassq; this._lsame = lsame; 
  74:   
  75:              #endregion
  76:   
  77:          }
  78:      
  79:          public DLANSY()
  80:          {
  81:      
  82:   
  83:              #region Dependencies (Initialization)
  84:              
  85:              DLASSQ dlassq = new DLASSQ();
  86:              LSAME lsame = new LSAME();
  87:   
  88:              #endregion
  89:   
  90:   
  91:              #region Set Dependencies
  92:              
  93:              this._dlassq = dlassq; this._lsame = lsame; 
  94:   
  95:              #endregion
  96:   
  97:          }
  98:          /// <summary>
  99:          /// Purpose
 100:          /// =======
 101:          /// 
 102:          /// DLANSY  returns the value of the one norm,  or the Frobenius norm, or
 103:          /// the  infinity norm,  or the  element of  largest absolute value  of a
 104:          /// real symmetric matrix A.
 105:          /// 
 106:          /// Description
 107:          /// ===========
 108:          /// 
 109:          /// DLANSY returns the value
 110:          /// 
 111:          /// DLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 112:          /// (
 113:          /// ( norm1(A),         NORM = '1', 'O' or 'o'
 114:          /// (
 115:          /// ( normI(A),         NORM = 'I' or 'i'
 116:          /// (
 117:          /// ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 118:          /// 
 119:          /// where  norm1  denotes the  one norm of a matrix (maximum column sum),
 120:          /// normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 121:          /// normF  denotes the  Frobenius norm of a matrix (square root of sum of
 122:          /// squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 123:          /// 
 124:          ///</summary>
 125:          /// <param name="NORM">
 126:          /// (input) CHARACTER*1
 127:          /// Specifies the value to be returned in DLANSY as described
 128:          /// above.
 129:          ///</param>
 130:          /// <param name="UPLO">
 131:          /// (input) CHARACTER*1
 132:          /// Specifies whether the upper or lower triangular part of the
 133:          /// symmetric matrix A is to be referenced.
 134:          /// = 'U':  Upper triangular part of A is referenced
 135:          /// = 'L':  Lower triangular part of A is referenced
 136:          ///</param>
 137:          /// <param name="N">
 138:          /// (input) INTEGER
 139:          /// The order of the matrix A.  N .GE. 0.  When N = 0, DLANSY is
 140:          /// set to zero.
 141:          ///</param>
 142:          /// <param name="A">
 143:          /// (input) DOUBLE PRECISION array, dimension (LDA,N)
 144:          /// The symmetric matrix A.  If UPLO = 'U', the leading n by n
 145:          /// upper triangular part of A contains the upper triangular part
 146:          /// of the matrix A, and the strictly lower triangular part of A
 147:          /// is not referenced.  If UPLO = 'L', the leading n by n lower
 148:          /// triangular part of A contains the lower triangular part of
 149:          /// the matrix A, and the strictly upper triangular part of A is
 150:          /// not referenced.
 151:          ///</param>
 152:          /// <param name="LDA">
 153:          /// (input) INTEGER
 154:          /// The leading dimension of the array A.  LDA .GE. max(N,1).
 155:          ///</param>
 156:          /// <param name="WORK">
 157:          /// (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
 158:          /// where LWORK .GE. N when NORM = 'I' or '1' or 'O'; otherwise,
 159:          /// WORK is not referenced.
 160:          ///</param>
 161:          public double Run(string NORM, string UPLO, int N, double[] A, int offset_a, int LDA, ref double[] WORK, int offset_work)
 162:          {
 163:          double dlansy = 0;
 164:   
 165:              #region Array Index Correction
 166:              
 167:               int o_a = -1 - LDA + offset_a;  int o_work = -1 + offset_work; 
 168:   
 169:              #endregion
 170:   
 171:   
 172:              #region Strings
 173:              
 174:              NORM = NORM.Substring(0, 1);  UPLO = UPLO.Substring(0, 1);  
 175:   
 176:              #endregion
 177:   
 178:   
 179:              #region Prolog
 180:              
 181:              // *
 182:              // *  -- LAPACK auxiliary routine (version 3.1) --
 183:              // *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
 184:              // *     November 2006
 185:              // *
 186:              // *     .. Scalar Arguments ..
 187:              // *     ..
 188:              // *     .. Array Arguments ..
 189:              // *     ..
 190:              // *
 191:              // *  Purpose
 192:              // *  =======
 193:              // *
 194:              // *  DLANSY  returns the value of the one norm,  or the Frobenius norm, or
 195:              // *  the  infinity norm,  or the  element of  largest absolute value  of a
 196:              // *  real symmetric matrix A.
 197:              // *
 198:              // *  Description
 199:              // *  ===========
 200:              // *
 201:              // *  DLANSY returns the value
 202:              // *
 203:              // *     DLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 204:              // *              (
 205:              // *              ( norm1(A),         NORM = '1', 'O' or 'o'
 206:              // *              (
 207:              // *              ( normI(A),         NORM = 'I' or 'i'
 208:              // *              (
 209:              // *              ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 210:              // *
 211:              // *  where  norm1  denotes the  one norm of a matrix (maximum column sum),
 212:              // *  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 213:              // *  normF  denotes the  Frobenius norm of a matrix (square root of sum of
 214:              // *  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 215:              // *
 216:              // *  Arguments
 217:              // *  =========
 218:              // *
 219:              // *  NORM    (input) CHARACTER*1
 220:              // *          Specifies the value to be returned in DLANSY as described
 221:              // *          above.
 222:              // *
 223:              // *  UPLO    (input) CHARACTER*1
 224:              // *          Specifies whether the upper or lower triangular part of the
 225:              // *          symmetric matrix A is to be referenced.
 226:              // *          = 'U':  Upper triangular part of A is referenced
 227:              // *          = 'L':  Lower triangular part of A is referenced
 228:              // *
 229:              // *  N       (input) INTEGER
 230:              // *          The order of the matrix A.  N >= 0.  When N = 0, DLANSY is
 231:              // *          set to zero.
 232:              // *
 233:              // *  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
 234:              // *          The symmetric matrix A.  If UPLO = 'U', the leading n by n
 235:              // *          upper triangular part of A contains the upper triangular part
 236:              // *          of the matrix A, and the strictly lower triangular part of A
 237:              // *          is not referenced.  If UPLO = 'L', the leading n by n lower
 238:              // *          triangular part of A contains the lower triangular part of
 239:              // *          the matrix A, and the strictly upper triangular part of A is
 240:              // *          not referenced.
 241:              // *
 242:              // *  LDA     (input) INTEGER
 243:              // *          The leading dimension of the array A.  LDA >= max(N,1).
 244:              // *
 245:              // *  WORK    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
 246:              // *          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
 247:              // *          WORK is not referenced.
 248:              // *
 249:              // * =====================================================================
 250:              // *
 251:              // *     .. Parameters ..
 252:              // *     ..
 253:              // *     .. Local Scalars ..
 254:              // *     ..
 255:              // *     .. External Subroutines ..
 256:              // *     ..
 257:              // *     .. External Functions ..
 258:              // *     ..
 259:              // *     .. Intrinsic Functions ..
 260:              //      INTRINSIC          ABS, MAX, SQRT;
 261:              // *     ..
 262:              // *     .. Executable Statements ..
 263:              // *
 264:   
 265:              #endregion
 266:   
 267:   
 268:              #region Body
 269:              
 270:              if (N == 0)
 271:              {
 272:                  VALUE = ZERO;
 273:              }
 274:              else
 275:              {
 276:                  if (this._lsame.Run(NORM, "M"))
 277:                  {
 278:                      // *
 279:                      // *        Find max(abs(A(i,j))).
 280:                      // *
 281:                      VALUE = ZERO;
 282:                      if (this._lsame.Run(UPLO, "U"))
 283:                      {
 284:                          for (J = 1; J <= N; J++)
 285:                          {
 286:                              for (I = 1; I <= J; I++)
 287:                              {
 288:                                  VALUE = Math.Max(VALUE, Math.Abs(A[I+J * LDA + o_a]));
 289:                              }
 290:                          }
 291:                      }
 292:                      else
 293:                      {
 294:                          for (J = 1; J <= N; J++)
 295:                          {
 296:                              for (I = J; I <= N; I++)
 297:                              {
 298:                                  VALUE = Math.Max(VALUE, Math.Abs(A[I+J * LDA + o_a]));
 299:                              }
 300:                          }
 301:                      }
 302:                  }
 303:                  else
 304:                  {
 305:                      if ((this._lsame.Run(NORM, "I")) || (this._lsame.Run(NORM, "O")) || (NORM == "1"))
 306:                      {
 307:                          // *
 308:                          // *        Find normI(A) ( = norm1(A), since A is symmetric).
 309:                          // *
 310:                          VALUE = ZERO;
 311:                          if (this._lsame.Run(UPLO, "U"))
 312:                          {
 313:                              for (J = 1; J <= N; J++)
 314:                              {
 315:                                  SUM = ZERO;
 316:                                  for (I = 1; I <= J - 1; I++)
 317:                                  {
 318:                                      ABSA = Math.Abs(A[I+J * LDA + o_a]);
 319:                                      SUM = SUM + ABSA;
 320:                                      WORK[I + o_work] = WORK[I + o_work] + ABSA;
 321:                                  }
 322:                                  WORK[J + o_work] = SUM + Math.Abs(A[J+J * LDA + o_a]);
 323:                              }
 324:                              for (I = 1; I <= N; I++)
 325:                              {
 326:                                  VALUE = Math.Max(VALUE, WORK[I + o_work]);
 327:                              }
 328:                          }
 329:                          else
 330:                          {
 331:                              for (I = 1; I <= N; I++)
 332:                              {
 333:                                  WORK[I + o_work] = ZERO;
 334:                              }
 335:                              for (J = 1; J <= N; J++)
 336:                              {
 337:                                  SUM = WORK[J + o_work] + Math.Abs(A[J+J * LDA + o_a]);
 338:                                  for (I = J + 1; I <= N; I++)
 339:                                  {
 340:                                      ABSA = Math.Abs(A[I+J * LDA + o_a]);
 341:                                      SUM = SUM + ABSA;
 342:                                      WORK[I + o_work] = WORK[I + o_work] + ABSA;
 343:                                  }
 344:                                  VALUE = Math.Max(VALUE, SUM);
 345:                              }
 346:                          }
 347:                      }
 348:                      else
 349:                      {
 350:                          if ((this._lsame.Run(NORM, "F")) || (this._lsame.Run(NORM, "E")))
 351:                          {
 352:                              // *
 353:                              // *        Find normF(A).
 354:                              // *
 355:                              SCALE = ZERO;
 356:                              SUM = ONE;
 357:                              if (this._lsame.Run(UPLO, "U"))
 358:                              {
 359:                                  for (J = 2; J <= N; J++)
 360:                                  {
 361:                                      this._dlassq.Run(J - 1, A, 1+J * LDA + o_a, 1, ref SCALE, ref SUM);
 362:                                  }
 363:                              }
 364:                              else
 365:                              {
 366:                                  for (J = 1; J <= N - 1; J++)
 367:                                  {
 368:                                      this._dlassq.Run(N - J, A, J + 1+J * LDA + o_a, 1, ref SCALE, ref SUM);
 369:                                  }
 370:                              }
 371:                              SUM = 2 * SUM;
 372:                              this._dlassq.Run(N, A, offset_a, LDA + 1, ref SCALE, ref SUM);
 373:                              VALUE = SCALE * Math.Sqrt(SUM);
 374:                          }
 375:                      }
 376:                  }
 377:              }
 378:              // *
 379:              dlansy = VALUE;
 380:              return dlansy;
 381:              // *
 382:              // *     End of DLANSY
 383:              // *
 384:   
 385:              #endregion
 386:   
 387:          }
 388:      }
 389:  }