Skip Navigation Links
Numerical Libraries
Linear Algebra
Differential Equations
Optimization
Samples
Skip Navigation Links
Linear Algebra
CSLapack
CSBlas
   1:  #region Translated by Jose Antonio De Santiago-Castillo.
   2:   
   3:  //Translated by Jose Antonio De Santiago-Castillo. 
   4:  //E-mail:JAntonioDeSantiago@gmail.com
   5:  //Web: www.DotNumerics.com
   6:  //
   7:  //Fortran to C# Translation.
   8:  //Translated by:
   9:  //F2CSharp Version 0.71 (November 10, 2009)
  10:  //Code Optimizations: None
  11:  //
  12:  #endregion
  13:   
  14:  using System;
  15:  using DotNumerics.FortranLibrary;
  16:   
  17:  namespace DotNumerics.CSLapack
  18:  {
  19:      /// <summary>
  20:      /// -- LAPACK auxiliary routine (version 3.1) --
  21:      /// Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
  22:      /// November 2006
  23:      /// Purpose
  24:      /// =======
  25:      /// 
  26:      /// DLABRD reduces the first NB rows and columns of a real general
  27:      /// m by n matrix A to upper or lower bidiagonal form by an orthogonal
  28:      /// transformation Q' * A * P, and returns the matrices X and Y which
  29:      /// are needed to apply the transformation to the unreduced part of A.
  30:      /// 
  31:      /// If m .GE. n, A is reduced to upper bidiagonal form; if m .LT. n, to lower
  32:      /// bidiagonal form.
  33:      /// 
  34:      /// This is an auxiliary routine called by DGEBRD
  35:      /// 
  36:      ///</summary>
  37:      public class DLABRD
  38:      {
  39:      
  40:   
  41:          #region Dependencies
  42:          
  43:          DGEMV _dgemv; DLARFG _dlarfg; DSCAL _dscal; 
  44:   
  45:          #endregion
  46:   
  47:   
  48:          #region Fields
  49:          
  50:          const double ZERO = 0.0E0; const double ONE = 1.0E0; int I = 0; 
  51:   
  52:          #endregion
  53:   
  54:          public DLABRD(DGEMV dgemv, DLARFG dlarfg, DSCAL dscal)
  55:          {
  56:      
  57:   
  58:              #region Set Dependencies
  59:              
  60:              this._dgemv = dgemv; this._dlarfg = dlarfg; this._dscal = dscal; 
  61:   
  62:              #endregion
  63:   
  64:          }
  65:      
  66:          public DLABRD()
  67:          {
  68:      
  69:   
  70:              #region Dependencies (Initialization)
  71:              
  72:              LSAME lsame = new LSAME();
  73:              XERBLA xerbla = new XERBLA();
  74:              DLAMC3 dlamc3 = new DLAMC3();
  75:              DLAPY2 dlapy2 = new DLAPY2();
  76:              DNRM2 dnrm2 = new DNRM2();
  77:              DSCAL dscal = new DSCAL();
  78:              DGEMV dgemv = new DGEMV(lsame, xerbla);
  79:              DLAMC1 dlamc1 = new DLAMC1(dlamc3);
  80:              DLAMC4 dlamc4 = new DLAMC4(dlamc3);
  81:              DLAMC5 dlamc5 = new DLAMC5(dlamc3);
  82:              DLAMC2 dlamc2 = new DLAMC2(dlamc3, dlamc1, dlamc4, dlamc5);
  83:              DLAMCH dlamch = new DLAMCH(lsame, dlamc2);
  84:              DLARFG dlarfg = new DLARFG(dlamch, dlapy2, dnrm2, dscal);
  85:   
  86:              #endregion
  87:   
  88:   
  89:              #region Set Dependencies
  90:              
  91:              this._dgemv = dgemv; this._dlarfg = dlarfg; this._dscal = dscal; 
  92:   
  93:              #endregion
  94:   
  95:          }
  96:          /// <summary>
  97:          /// Purpose
  98:          /// =======
  99:          /// 
 100:          /// DLABRD reduces the first NB rows and columns of a real general
 101:          /// m by n matrix A to upper or lower bidiagonal form by an orthogonal
 102:          /// transformation Q' * A * P, and returns the matrices X and Y which
 103:          /// are needed to apply the transformation to the unreduced part of A.
 104:          /// 
 105:          /// If m .GE. n, A is reduced to upper bidiagonal form; if m .LT. n, to lower
 106:          /// bidiagonal form.
 107:          /// 
 108:          /// This is an auxiliary routine called by DGEBRD
 109:          /// 
 110:          ///</summary>
 111:          /// <param name="M">
 112:          /// (input) INTEGER
 113:          /// The number of rows in the matrix A.
 114:          ///</param>
 115:          /// <param name="N">
 116:          /// (input) INTEGER
 117:          /// The number of columns in the matrix A.
 118:          ///</param>
 119:          /// <param name="NB">
 120:          /// (input) INTEGER
 121:          /// The number of leading rows and columns of A to be reduced.
 122:          ///</param>
 123:          /// <param name="A">
 124:          /// (input/output) DOUBLE PRECISION array, dimension (LDA,N)
 125:          /// On entry, the m by n general matrix to be reduced.
 126:          /// On exit, the first NB rows and columns of the matrix are
 127:          /// overwritten; the rest of the array is unchanged.
 128:          /// If m .GE. n, elements on and below the diagonal in the first NB
 129:          /// columns, with the array TAUQ, represent the orthogonal
 130:          /// matrix Q as a product of elementary reflectors; and
 131:          /// elements above the diagonal in the first NB rows, with the
 132:          /// array TAUP, represent the orthogonal matrix P as a product
 133:          /// of elementary reflectors.
 134:          /// If m .LT. n, elements below the diagonal in the first NB
 135:          /// columns, with the array TAUQ, represent the orthogonal
 136:          /// matrix Q as a product of elementary reflectors, and
 137:          /// elements on and above the diagonal in the first NB rows,
 138:          /// with the array TAUP, represent the orthogonal matrix P as
 139:          /// a product of elementary reflectors.
 140:          /// See Further Details.
 141:          ///</param>
 142:          /// <param name="LDA">
 143:          /// (input) INTEGER
 144:          /// The leading dimension of the array A.  LDA .GE. max(1,M).
 145:          ///</param>
 146:          /// <param name="D">
 147:          /// (output) DOUBLE PRECISION array, dimension (NB)
 148:          /// The diagonal elements of the first NB rows and columns of
 149:          /// the reduced matrix.  D(i) = A(i,i).
 150:          ///</param>
 151:          /// <param name="E">
 152:          /// (output) DOUBLE PRECISION array, dimension (NB)
 153:          /// The off-diagonal elements of the first NB rows and columns of
 154:          /// the reduced matrix.
 155:          ///</param>
 156:          /// <param name="TAUQ">
 157:          /// (output) DOUBLE PRECISION array dimension (NB)
 158:          /// The scalar factors of the elementary reflectors which
 159:          /// represent the orthogonal matrix Q. See Further Details.
 160:          ///</param>
 161:          /// <param name="TAUP">
 162:          /// (output) DOUBLE PRECISION array, dimension (NB)
 163:          /// The scalar factors of the elementary reflectors which
 164:          /// represent the orthogonal matrix P. See Further Details.
 165:          ///</param>
 166:          /// <param name="X">
 167:          /// (output) DOUBLE PRECISION array, dimension (LDX,NB)
 168:          /// The m-by-nb matrix X required to update the unreduced part
 169:          /// of A.
 170:          ///</param>
 171:          /// <param name="LDX">
 172:          /// (input) INTEGER
 173:          /// The leading dimension of the array X. LDX .GE. M.
 174:          ///</param>
 175:          /// <param name="Y">
 176:          /// (output) DOUBLE PRECISION array, dimension (LDY,NB)
 177:          /// The n-by-nb matrix Y required to update the unreduced part
 178:          /// of A.
 179:          ///</param>
 180:          /// <param name="LDY">
 181:          /// (input) INTEGER
 182:          /// The leading dimension of the array Y. LDY .GE. N.
 183:          ///</param>
 184:          public void Run(int M, int N, int NB, ref double[] A, int offset_a, int LDA, ref double[] D, int offset_d
 185:                           , ref double[] E, int offset_e, ref double[] TAUQ, int offset_tauq, ref double[] TAUP, int offset_taup, ref double[] X, int offset_x, int LDX, ref double[] Y, int offset_y
 186:                           , int LDY)
 187:          {
 188:   
 189:              #region Array Index Correction
 190:              
 191:               int o_a = -1 - LDA + offset_a;  int o_d = -1 + offset_d;  int o_e = -1 + offset_e;  int o_tauq = -1 + offset_tauq; 
 192:               int o_taup = -1 + offset_taup; int o_x = -1 - LDX + offset_x;  int o_y = -1 - LDY + offset_y; 
 193:   
 194:              #endregion
 195:   
 196:   
 197:              #region Prolog
 198:              
 199:              // *
 200:              // *  -- LAPACK auxiliary routine (version 3.1) --
 201:              // *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
 202:              // *     November 2006
 203:              // *
 204:              // *     .. Scalar Arguments ..
 205:              // *     ..
 206:              // *     .. Array Arguments ..
 207:              // *     ..
 208:              // *
 209:              // *  Purpose
 210:              // *  =======
 211:              // *
 212:              // *  DLABRD reduces the first NB rows and columns of a real general
 213:              // *  m by n matrix A to upper or lower bidiagonal form by an orthogonal
 214:              // *  transformation Q' * A * P, and returns the matrices X and Y which
 215:              // *  are needed to apply the transformation to the unreduced part of A.
 216:              // *
 217:              // *  If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
 218:              // *  bidiagonal form.
 219:              // *
 220:              // *  This is an auxiliary routine called by DGEBRD
 221:              // *
 222:              // *  Arguments
 223:              // *  =========
 224:              // *
 225:              // *  M       (input) INTEGER
 226:              // *          The number of rows in the matrix A.
 227:              // *
 228:              // *  N       (input) INTEGER
 229:              // *          The number of columns in the matrix A.
 230:              // *
 231:              // *  NB      (input) INTEGER
 232:              // *          The number of leading rows and columns of A to be reduced.
 233:              // *
 234:              // *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
 235:              // *          On entry, the m by n general matrix to be reduced.
 236:              // *          On exit, the first NB rows and columns of the matrix are
 237:              // *          overwritten; the rest of the array is unchanged.
 238:              // *          If m >= n, elements on and below the diagonal in the first NB
 239:              // *            columns, with the array TAUQ, represent the orthogonal
 240:              // *            matrix Q as a product of elementary reflectors; and
 241:              // *            elements above the diagonal in the first NB rows, with the
 242:              // *            array TAUP, represent the orthogonal matrix P as a product
 243:              // *            of elementary reflectors.
 244:              // *          If m < n, elements below the diagonal in the first NB
 245:              // *            columns, with the array TAUQ, represent the orthogonal
 246:              // *            matrix Q as a product of elementary reflectors, and
 247:              // *            elements on and above the diagonal in the first NB rows,
 248:              // *            with the array TAUP, represent the orthogonal matrix P as
 249:              // *            a product of elementary reflectors.
 250:              // *          See Further Details.
 251:              // *
 252:              // *  LDA     (input) INTEGER
 253:              // *          The leading dimension of the array A.  LDA >= max(1,M).
 254:              // *
 255:              // *  D       (output) DOUBLE PRECISION array, dimension (NB)
 256:              // *          The diagonal elements of the first NB rows and columns of
 257:              // *          the reduced matrix.  D(i) = A(i,i).
 258:              // *
 259:              // *  E       (output) DOUBLE PRECISION array, dimension (NB)
 260:              // *          The off-diagonal elements of the first NB rows and columns of
 261:              // *          the reduced matrix.
 262:              // *
 263:              // *  TAUQ    (output) DOUBLE PRECISION array dimension (NB)
 264:              // *          The scalar factors of the elementary reflectors which
 265:              // *          represent the orthogonal matrix Q. See Further Details.
 266:              // *
 267:              // *  TAUP    (output) DOUBLE PRECISION array, dimension (NB)
 268:              // *          The scalar factors of the elementary reflectors which
 269:              // *          represent the orthogonal matrix P. See Further Details.
 270:              // *
 271:              // *  X       (output) DOUBLE PRECISION array, dimension (LDX,NB)
 272:              // *          The m-by-nb matrix X required to update the unreduced part
 273:              // *          of A.
 274:              // *
 275:              // *  LDX     (input) INTEGER
 276:              // *          The leading dimension of the array X. LDX >= M.
 277:              // *
 278:              // *  Y       (output) DOUBLE PRECISION array, dimension (LDY,NB)
 279:              // *          The n-by-nb matrix Y required to update the unreduced part
 280:              // *          of A.
 281:              // *
 282:              // *  LDY     (input) INTEGER
 283:              // *          The leading dimension of the array Y. LDY >= N.
 284:              // *
 285:              // *  Further Details
 286:              // *  ===============
 287:              // *
 288:              // *  The matrices Q and P are represented as products of elementary
 289:              // *  reflectors:
 290:              // *
 291:              // *     Q = H(1) H(2) . . . H(nb)  and  P = G(1) G(2) . . . G(nb)
 292:              // *
 293:              // *  Each H(i) and G(i) has the form:
 294:              // *
 295:              // *     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'
 296:              // *
 297:              // *  where tauq and taup are real scalars, and v and u are real vectors.
 298:              // *
 299:              // *  If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
 300:              // *  A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
 301:              // *  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
 302:              // *
 303:              // *  If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
 304:              // *  A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
 305:              // *  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
 306:              // *
 307:              // *  The elements of the vectors v and u together form the m-by-nb matrix
 308:              // *  V and the nb-by-n matrix U' which are needed, with X and Y, to apply
 309:              // *  the transformation to the unreduced part of the matrix, using a block
 310:              // *  update of the form:  A := A - V*Y' - X*U'.
 311:              // *
 312:              // *  The contents of A on exit are illustrated by the following examples
 313:              // *  with nb = 2:
 314:              // *
 315:              // *  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
 316:              // *
 317:              // *    (  1   1   u1  u1  u1 )           (  1   u1  u1  u1  u1  u1 )
 318:              // *    (  v1  1   1   u2  u2 )           (  1   1   u2  u2  u2  u2 )
 319:              // *    (  v1  v2  a   a   a  )           (  v1  1   a   a   a   a  )
 320:              // *    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
 321:              // *    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
 322:              // *    (  v1  v2  a   a   a  )
 323:              // *
 324:              // *  where a denotes an element of the original matrix which is unchanged,
 325:              // *  vi denotes an element of the vector defining H(i), and ui an element
 326:              // *  of the vector defining G(i).
 327:              // *
 328:              // *  =====================================================================
 329:              // *
 330:              // *     .. Parameters ..
 331:              // *     ..
 332:              // *     .. Local Scalars ..
 333:              // *     ..
 334:              // *     .. External Subroutines ..
 335:              // *     ..
 336:              // *     .. Intrinsic Functions ..
 337:              //      INTRINSIC          MIN;
 338:              // *     ..
 339:              // *     .. Executable Statements ..
 340:              // *
 341:              // *     Quick return if possible
 342:              // *
 343:   
 344:              #endregion
 345:   
 346:   
 347:              #region Body
 348:              
 349:              if (M <= 0 || N <= 0) return;
 350:              // *
 351:              if (M >= N)
 352:              {
 353:                  // *
 354:                  // *        Reduce to upper bidiagonal form
 355:                  // *
 356:                  for (I = 1; I <= NB; I++)
 357:                  {
 358:                      // *
 359:                      // *           Update A(i:m,i)
 360:                      // *
 361:                      this._dgemv.Run("No transpose", M - I + 1, I - 1,  - ONE, A, I+1 * LDA + o_a, LDA
 362:                                      , Y, I+1 * LDY + o_y, LDY, ONE, ref A, I+I * LDA + o_a, 1);
 363:                      this._dgemv.Run("No transpose", M - I + 1, I - 1,  - ONE, X, I+1 * LDX + o_x, LDX
 364:                                      , A, 1+I * LDA + o_a, 1, ONE, ref A, I+I * LDA + o_a, 1);
 365:                      // *
 366:                      // *           Generate reflection Q(i) to annihilate A(i+1:m,i)
 367:                      // *
 368:                      this._dlarfg.Run(M - I + 1, ref A[I+I * LDA + o_a], ref A, Math.Min(I + 1, M)+I * LDA + o_a, 1, ref TAUQ[I + o_tauq]);
 369:                      D[I + o_d] = A[I+I * LDA + o_a];
 370:                      if (I < N)
 371:                      {
 372:                          A[I+I * LDA + o_a] = ONE;
 373:                          // *
 374:                          // *              Compute Y(i+1:n,i)
 375:                          // *
 376:                          this._dgemv.Run("Transpose", M - I + 1, N - I, ONE, A, I+(I + 1) * LDA + o_a, LDA
 377:                                          , A, I+I * LDA + o_a, 1, ZERO, ref Y, I + 1+I * LDY + o_y, 1);
 378:                          this._dgemv.Run("Transpose", M - I + 1, I - 1, ONE, A, I+1 * LDA + o_a, LDA
 379:                                          , A, I+I * LDA + o_a, 1, ZERO, ref Y, 1+I * LDY + o_y, 1);
 380:                          this._dgemv.Run("No transpose", N - I, I - 1,  - ONE, Y, I + 1+1 * LDY + o_y, LDY
 381:                                          , Y, 1+I * LDY + o_y, 1, ONE, ref Y, I + 1+I * LDY + o_y, 1);
 382:                          this._dgemv.Run("Transpose", M - I + 1, I - 1, ONE, X, I+1 * LDX + o_x, LDX
 383:                                          , A, I+I * LDA + o_a, 1, ZERO, ref Y, 1+I * LDY + o_y, 1);
 384:                          this._dgemv.Run("Transpose", I - 1, N - I,  - ONE, A, 1+(I + 1) * LDA + o_a, LDA
 385:                                          , Y, 1+I * LDY + o_y, 1, ONE, ref Y, I + 1+I * LDY + o_y, 1);
 386:                          this._dscal.Run(N - I, TAUQ[I + o_tauq], ref Y, I + 1+I * LDY + o_y, 1);
 387:                          // *
 388:                          // *              Update A(i,i+1:n)
 389:                          // *
 390:                          this._dgemv.Run("No transpose", N - I, I,  - ONE, Y, I + 1+1 * LDY + o_y, LDY
 391:                                          , A, I+1 * LDA + o_a, LDA, ONE, ref A, I+(I + 1) * LDA + o_a, LDA);
 392:                          this._dgemv.Run("Transpose", I - 1, N - I,  - ONE, A, 1+(I + 1) * LDA + o_a, LDA
 393:                                          , X, I+1 * LDX + o_x, LDX, ONE, ref A, I+(I + 1) * LDA + o_a, LDA);
 394:                          // *
 395:                          // *              Generate reflection P(i) to annihilate A(i,i+2:n)
 396:                          // *
 397:                          this._dlarfg.Run(N - I, ref A[I+(I + 1) * LDA + o_a], ref A, I+Math.Min(I + 2, N) * LDA + o_a, LDA, ref TAUP[I + o_taup]);
 398:                          E[I + o_e] = A[I+(I + 1) * LDA + o_a];
 399:                          A[I+(I + 1) * LDA + o_a] = ONE;
 400:                          // *
 401:                          // *              Compute X(i+1:m,i)
 402:                          // *
 403:                          this._dgemv.Run("No transpose", M - I, N - I, ONE, A, I + 1+(I + 1) * LDA + o_a, LDA
 404:                                          , A, I+(I + 1) * LDA + o_a, LDA, ZERO, ref X, I + 1+I * LDX + o_x, 1);
 405:                          this._dgemv.Run("Transpose", N - I, I, ONE, Y, I + 1+1 * LDY + o_y, LDY
 406:                                          , A, I+(I + 1) * LDA + o_a, LDA, ZERO, ref X, 1+I * LDX + o_x, 1);
 407:                          this._dgemv.Run("No transpose", M - I, I,  - ONE, A, I + 1+1 * LDA + o_a, LDA
 408:                                          , X, 1+I * LDX + o_x, 1, ONE, ref X, I + 1+I * LDX + o_x, 1);
 409:                          this._dgemv.Run("No transpose", I - 1, N - I, ONE, A, 1+(I + 1) * LDA + o_a, LDA
 410:                                          , A, I+(I + 1) * LDA + o_a, LDA, ZERO, ref X, 1+I * LDX + o_x, 1);
 411:                          this._dgemv.Run("No transpose", M - I, I - 1,  - ONE, X, I + 1+1 * LDX + o_x, LDX
 412:                                          , X, 1+I * LDX + o_x, 1, ONE, ref X, I + 1+I * LDX + o_x, 1);
 413:                          this._dscal.Run(M - I, TAUP[I + o_taup], ref X, I + 1+I * LDX + o_x, 1);
 414:                      }
 415:                  }
 416:              }
 417:              else
 418:              {
 419:                  // *
 420:                  // *        Reduce to lower bidiagonal form
 421:                  // *
 422:                  for (I = 1; I <= NB; I++)
 423:                  {
 424:                      // *
 425:                      // *           Update A(i,i:n)
 426:                      // *
 427:                      this._dgemv.Run("No transpose", N - I + 1, I - 1,  - ONE, Y, I+1 * LDY + o_y, LDY
 428:                                      , A, I+1 * LDA + o_a, LDA, ONE, ref A, I+I * LDA + o_a, LDA);
 429:                      this._dgemv.Run("Transpose", I - 1, N - I + 1,  - ONE, A, 1+I * LDA + o_a, LDA
 430:                                      , X, I+1 * LDX + o_x, LDX, ONE, ref A, I+I * LDA + o_a, LDA);
 431:                      // *
 432:                      // *           Generate reflection P(i) to annihilate A(i,i+1:n)
 433:                      // *
 434:                      this._dlarfg.Run(N - I + 1, ref A[I+I * LDA + o_a], ref A, I+Math.Min(I + 1, N) * LDA + o_a, LDA, ref TAUP[I + o_taup]);
 435:                      D[I + o_d] = A[I+I * LDA + o_a];
 436:                      if (I < M)
 437:                      {
 438:                          A[I+I * LDA + o_a] = ONE;
 439:                          // *
 440:                          // *              Compute X(i+1:m,i)
 441:                          // *
 442:                          this._dgemv.Run("No transpose", M - I, N - I + 1, ONE, A, I + 1+I * LDA + o_a, LDA
 443:                                          , A, I+I * LDA + o_a, LDA, ZERO, ref X, I + 1+I * LDX + o_x, 1);
 444:                          this._dgemv.Run("Transpose", N - I + 1, I - 1, ONE, Y, I+1 * LDY + o_y, LDY
 445:                                          , A, I+I * LDA + o_a, LDA, ZERO, ref X, 1+I * LDX + o_x, 1);
 446:                          this._dgemv.Run("No transpose", M - I, I - 1,  - ONE, A, I + 1+1 * LDA + o_a, LDA
 447:                                          , X, 1+I * LDX + o_x, 1, ONE, ref X, I + 1+I * LDX + o_x, 1);
 448:                          this._dgemv.Run("No transpose", I - 1, N - I + 1, ONE, A, 1+I * LDA + o_a, LDA
 449:                                          , A, I+I * LDA + o_a, LDA, ZERO, ref X, 1+I * LDX + o_x, 1);
 450:                          this._dgemv.Run("No transpose", M - I, I - 1,  - ONE, X, I + 1+1 * LDX + o_x, LDX
 451:                                          , X, 1+I * LDX + o_x, 1, ONE, ref X, I + 1+I * LDX + o_x, 1);
 452:                          this._dscal.Run(M - I, TAUP[I + o_taup], ref X, I + 1+I * LDX + o_x, 1);
 453:                          // *
 454:                          // *              Update A(i+1:m,i)
 455:                          // *
 456:                          this._dgemv.Run("No transpose", M - I, I - 1,  - ONE, A, I + 1+1 * LDA + o_a, LDA
 457:                                          , Y, I+1 * LDY + o_y, LDY, ONE, ref A, I + 1+I * LDA + o_a, 1);
 458:                          this._dgemv.Run("No transpose", M - I, I,  - ONE, X, I + 1+1 * LDX + o_x, LDX
 459:                                          , A, 1+I * LDA + o_a, 1, ONE, ref A, I + 1+I * LDA + o_a, 1);
 460:                          // *
 461:                          // *              Generate reflection Q(i) to annihilate A(i+2:m,i)
 462:                          // *
 463:                          this._dlarfg.Run(M - I, ref A[I + 1+I * LDA + o_a], ref A, Math.Min(I + 2, M)+I * LDA + o_a, 1, ref TAUQ[I + o_tauq]);
 464:                          E[I + o_e] = A[I + 1+I * LDA + o_a];
 465:                          A[I + 1+I * LDA + o_a] = ONE;
 466:                          // *
 467:                          // *              Compute Y(i+1:n,i)
 468:                          // *
 469:                          this._dgemv.Run("Transpose", M - I, N - I, ONE, A, I + 1+(I + 1) * LDA + o_a, LDA
 470:                                          , A, I + 1+I * LDA + o_a, 1, ZERO, ref Y, I + 1+I * LDY + o_y, 1);
 471:                          this._dgemv.Run("Transpose", M - I, I - 1, ONE, A, I + 1+1 * LDA + o_a, LDA
 472:                                          , A, I + 1+I * LDA + o_a, 1, ZERO, ref Y, 1+I * LDY + o_y, 1);
 473:                          this._dgemv.Run("No transpose", N - I, I - 1,  - ONE, Y, I + 1+1 * LDY + o_y, LDY
 474:                                          , Y, 1+I * LDY + o_y, 1, ONE, ref Y, I + 1+I * LDY + o_y, 1);
 475:                          this._dgemv.Run("Transpose", M - I, I, ONE, X, I + 1+1 * LDX + o_x, LDX
 476:                                          , A, I + 1+I * LDA + o_a, 1, ZERO, ref Y, 1+I * LDY + o_y, 1);
 477:                          this._dgemv.Run("Transpose", I, N - I,  - ONE, A, 1+(I + 1) * LDA + o_a, LDA
 478:                                          , Y, 1+I * LDY + o_y, 1, ONE, ref Y, I + 1+I * LDY + o_y, 1);
 479:                          this._dscal.Run(N - I, TAUQ[I + o_tauq], ref Y, I + 1+I * LDY + o_y, 1);
 480:                      }
 481:                  }
 482:              }
 483:              return;
 484:              // *
 485:              // *     End of DLABRD
 486:              // *
 487:   
 488:              #endregion
 489:   
 490:          }
 491:      }
 492:  }